Unités d’aire et de superficie

La surface désigne la couche superficielle d’un objet.
L’aire ou la superficie d’une surface correspond au nombre de points qui composent cette surface. Le terme aire est utilisé en mathématique alors que le terme superficie est utilisé principalement pour la mesure de la surface de terrains.

Unité de base : le mètre carré

Le mètre carré (symbole m²) est l’unité de base pour la mesure d’une aire. 1 mètre carré correspond à la surface d’un carré d’un mètre de côté.

Lire la suite »

Aire et surface d’un rectangle

L’aire A de la surface d’un rectangle de longueur L et de largeur l est égale à :

A = L x l

Lire la suite »

Aire et surface d’un carré

L’aire A correspondant à la surface d’un carré de côté c est égale à :

A = c²

Lire la suite »

Aire et surface d’un triangle rectangle

Dans un triangle rectangle, soient L et l les longueurs des côtés adjacents à l’angle droit. L’aire A de ce triangle rectangle est calculée à partir de la formule suivante :

A = L x l / 2

Lire la suite »

Surface et cercle : aire d’un disque

La surface délimitée par un cercle de rayon r correspond à l’aire A du disque de rayon r.

L’aire A d’un disque de rayon r est égale à :

A = π ²

Lire la suite »

Aire et surface d’un triangle quelconque

Soit un triangle quelconque dont la hauteur est égale à h et la longueur de la base est L. L’aire A de ce triangle est égale à :

A = L x h / 2

Lire la suite »

Surface et superficie d’un terrain : ares et hectares

Pour la surface d’un terrain, on parle de superficie plutôt que d’aire, et on utilise l’are (symbole a) et l’hectare (symbole ha) plutôt que le mètre carré (m²) ou le kilomètre carré (km²) :

  • Un are est égal à 100 m², soit l’équivalent d’un carré de 10 mètres de côté.
  • Un hectare est égal à 100 ares ou encore 10 000 m², soit l’équivalent d’un carré de 100 mètres de côté.

Lire la suite »

Aire et surface d’un triangle isocèle

Un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Si b est la longueur de ces deux côtés et a la longueur du troisième côté, alors l’aire A correspondant à la surface de ce triangle isocèle est égale à :

Formule de calcul de l'aire d'un triangle isocèle

Un triangle isocèle ayant les propriétés d’un triangle quelconque, si h est la hauteur du triangle isocèle, son aire A est égale à :

A = a x h / 2

Lire la suite »

Aire et surface d’un triangle équilatéral

Un triangle équilatéral est un triangle dont les trois côtés sont égaux. Si a est la longueur de ces trois côtés, l’aire A correspondant à la surface de ce triangle équilatéral est égale à :

Surface d'un triangle équilatéral - formule

Un triangle équilatéral ayant les propriétés d’un triangle quelconque, si h est la hauteur du triangle équilatéral, son aire A est égale à :

A = a x h / 2

Lire la suite »

Aire et surface d’un parallélogramme

Un parallélogramme est une figure à quatre côtés. Dans un parallélogramme, les côtés opposés deux à deux ont la même longueur et sont parallèles. Si l est la longueur d’un de ces côtés, et h est la hauteur du parallélogramme, alors l’aire A de la surface correspondant à ce parallélogramme est égale à :

A = h x l

Lire la suite »